Vector Triple Product | Scalar Triple Produc
Vector Triple Product | Scalar Triple Product

Vector Triple Product

Definition:

The vector triple product involves three vectors a\mathbf{a}, b\mathbf{b}, and c\mathbf{c}. It is defined as:

a×(b×c)\mathbf{a} \times (\mathbf{b} \times \mathbf{c})

Expansion:

To simplify a×(b×c)\mathbf{a} \times (\mathbf{b} \times \mathbf{c}), use the vector triple product identity:

a×(b×c)=(ac)b(ab)c\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}

Proof:

  1. Express Cross Product in Component Form:

    Using the definition of the cross product in component form:

    b×c=ijkb1b2b3c1c2c3∣​

    Suppose:

    b×c=(b2c3b3c2,b3c1b1c3,b1c2b2c1)\mathbf{b} \times \mathbf{c} = (b_2c_3 - b_3c_2, b_3c_1 - b_1c_3, b_1c_2 - b_2c_1)
  2. Cross Product with a\mathbf{a}:

    Now compute a×(b×c)\mathbf{a} \times (\mathbf{b} \times \mathbf{c}):

    a×(b×c)=ijka1a2a3b2c3b3c2b3c1b1c3b1c2b2c1∣​

    Expanding this determinant, we get:

    a×(b×c)=(a2(b1c2b2c1)a3(b1c1b3c2),a3(b1c3b2c1)a1(b1c3b3c1),a1(b2c2b2c1)a2(b1c2b2c1))\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (a_2 (b_1c_2 - b_2c_1) - a_3 (b_1c_1 - b_3c_2), a_3 (b_1c_3 - b_2c_1) - a_1 (b_1c_3 - b_3c_1), a_1 (b_2c_2 - b_2c_1) - a_2 (b_1c_2 - b_2c_1))
  3. Simplify Using Dot Products:

    To simplify, use the dot products:

    ac=a1c1+a2c2+a3c3\mathbf{a} \cdot \mathbf{c} = a_1c_1 + a_2c_2 + a_3c_3 ab=a1b1+a2b2+a3b3\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3

    Thus:

    (ac)b=(a1c1+a2c2+a3c3)(b1,b2,b3)(\mathbf{a} \cdot \mathbf{c}) \mathbf{b} = (a_1c_1 + a_2c_2 + a_3c_3) (b_1, b_2, b_3) (ab)c=(a1b1+a2b2+a3b3)(c1,c2,c3)(\mathbf{a} \cdot \mathbf{b}) \mathbf{c} = (a_1b_1 + a_2b_2 + a_3b_3) (c_1, c_2, c_3)

    The resulting vector from the cross product is:

    (ac)b(ab)c(\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}

Interpretation:

The result (ac)b(ab)c(\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} is a vector that lies in the plane defined by b\mathbf{b} and c\mathbf{c}. It reflects how the vector a\mathbf{a} influences the plane spanned by b\mathbf{b} and c\mathbf{c}.

Scalar Triple Product

Definition:

The scalar triple product is defined as:

a(b×c)\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})

Interpretation:

The scalar triple product gives the volume of the parallelepiped formed by the vectors a\mathbf{a}, b\mathbf{b}, and c\mathbf{c}. The volume is the absolute value of the scalar triple product, and its sign indicates the orientation of the vectors.

Proof:

  1. Express Using Determinants:

    The scalar triple product can be written as the determinant of a matrix whose rows are the vectors:

    a(b×c)=a1a2a3b1b2b3c1c2c3∣​
  2. Cyclic Permutations:

    The scalar triple product is invariant under cyclic permutations:

    a(b×c)=b(c×a)=c(a×b)\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})

    This follows from the properties of determinants and the cross product.

Example:

Let a=(1,2,3)\mathbf{a} = (1, 2, 3), b=(4,5,6)\mathbf{b} = (4, 5, 6), and c=(7,8,9)\mathbf{c} = (7, 8, 9).

Scalar Triple Product:

a(b×c)=123456789∣​

Calculate the determinant:

123456789=1(5968)2(4967)+3(4857)\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 1\cdot (5\cdot9 - 6\cdot8) - 2\cdot (4\cdot9 - 6\cdot7) + 3\cdot (4\cdot8 - 5\cdot7)
=1(3)2(6)+3(3)=3+129=0
= 1\cdot (-3) - 2\cdot (-6) + 3\cdot (-3) = -3 + 12 - 9 = 0

Since the result is 0, the vectors a\mathbf{a}, b\mathbf{b}, and c\mathbf{c} are coplanar, meaning they lie in the same plane and do not form a three-dimensional parallelepiped.

Summary

  • Vector Triple Product: a×(b×c)=(ac)b(ab)c\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}. This product gives a vector that can be interpreted as a combination of b\mathbf{b} and c\mathbf{c}, influenced by a\mathbf{a}.

  • Scalar Triple Product: a(b×c)\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}). This product gives a scalar that represents the volume of the parallelepiped formed by a\mathbf{a}, b\mathbf{b}, and c\mathbf{c}, and its sign indicates the orientation.